CloudiFacturing Experiments

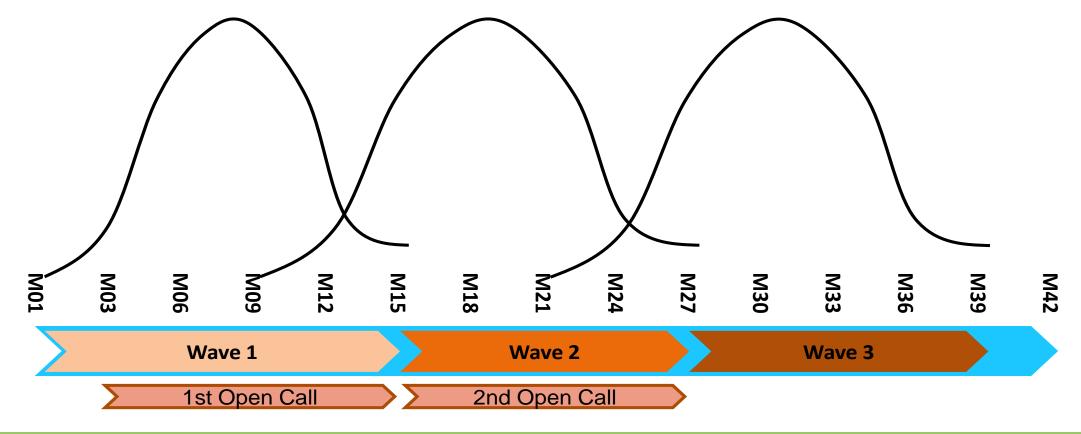
Ipar 4.0 – 5th March 2021

UNIVERSITY OF WESTMINSTER#

Prof Tamas KissUniversity of Westminster, London, UK

A short personal introduction

- Professor of Distributed Computing at the University of Westminster, London
- Director of Research Centre for Parallel Computing
- 20 years experience in parallel and distributed computing, especially for the manufacturing and healthcare sectors
- Participated in 17 EU funded projects
- Coordinated 3 EU projects
 - One with cascade funding (CloudSME)
- Leader and coordinator of the application experiment activities in CloudiFacturing



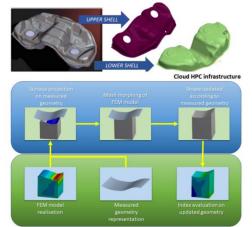
Application experiments in CloudiFacturing

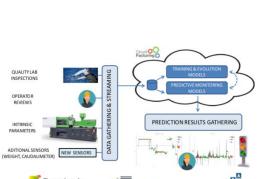
- 21 application experiments executed in three waves
- Aim:
 - cross-border application experiments to further mature and validate the CFG technology
 - generate the first customers of the emGORA and help achieving a critical mass

CFG experiment examples – wave 1

- 1. Optimizing design and production of electric drives
- 2. Cloud-based modelling for improving resin infusion process
- 3. Improving quality control and maintenance at manufacturing SMEs using big data analytics
- 4. Numerical modelling and simulation of heat treating processes
- 5. Optimizing solar panel production
- 6. Optimizing efficiency of truck components manufacturing processes by data analytics
- 7. Simulating and improving food packaging
 - All experiments completed and reported in D1.2
 - Most experiments are expected to be offered in the emGORA

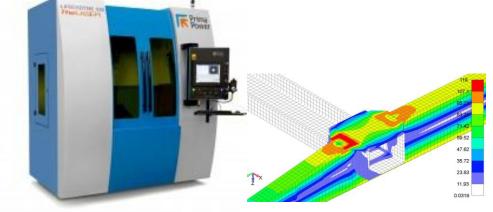





CFG experiment examples – wave 2

Facturin

- Flowforming process calibration via cloud optimisation
- Cloudification of image analysis for human measure collection for personalised protection clothing engineering and production
- 10. Smart Thermoplastic Injection
- 11. Cloudified analysis of multi-sensorial data for optimised manufacturing
- 12. Update of CAE models on actual manufactured shapes
- 13. Optimisation of the production process of metal structures
- 14. Data-twin based and fog computing driven proactive control and maintenance in laser-based manufacturing



Management/coordination (UoW)								
	Exp. 8	Exp. 9	Exp. 10	Exp. 11	Exp. 12	Exp. 13	Exp. 14	
End User	DENN	TroTusTex	Thermolymp.	DURIT	CMS	MVE	Emdip	
ISV/VAR/ Research	QUANTECH, CIMNE	i-Deal	BMS, Itainnova	Brascintrol, CERTH, OF-ADC	RBF-Morph, RINA, Ansys	Vodena, UoK Fac. Scie, Fac. Eng.	Netico, Nissatech	
HPC/Cloud Provider	CloudSigma, IT4I	IT4I	CloudSigma	IT4I	IT4I	CloudSigma	CloudSigma	
DIH	IT4I	Stam	Insomnia	Insomnia	DFKI	Innomine	Stam	
Competence Centres	SZTAKI, CloudBroker, Fraunhofer	SINTEF, DFKI	CloudBroker, SZTAKI	IT4I Fraunhofer	SINTEF, DFKI, Fraunhofer	SZTAKI UoW CloudBroker Fraunhofer	CloudBroker	
Technical and usability requirements collection and evaluation (UNOTT)								
Business support (SUPSI)								

- Technical support help in implementation and use of technology
- Access to Cloud/High Performance Computing resources
- Support in requirements collection technical and usability requirements
- Business coaching business analysis
- Commercial onboarding activities preparation for commercial exploitation
- Generic guidance and leadership by the DIHs

Impact is what the EC wants to see

Wave	KPI	Enhanced new products services	Increase in turnover (K€)	Increase in employme nt	New contacts/ partners	More efficient business processes	Reduction in time to product/ market	Improved customer satisfaction	Increased business practice	Partners in new countries
Wave 1	Within 1 year	19	1,645	13	52	For 81% of partners	10%-80%	5%-100%	For 75% of partners	17
	Within 5 years	82	8,545	60	190	For 81% of partners	20%-80%	10%-100%	For 75% of partners	69
Wave 2	Within 1 year	23	5,820	123	58	For 94% of partners	For 83% of partners	For all partners	For 89% of partners	24
	Within 5 years	51	38,110	340	221	For 94% of partners	For 83% of partners	For all partners	For 89% of partners	83
Wave 3	Within 1 year	20	8,665	16	81	For 79% of partners	For 63% of partners	For 84%	For 89% of partners	29
	Within 5 years	55	29,550	84	274	For 84% of partners	For 68% of partners	For 84%	For all partners	98
Overall	Within 1 year	62	16,130	142	191	For most	For most	For most	For most	24
	Within 5 years	188	76,205	484	685	For most	For most	For most	For most	83

Proposals submitted/successful:	61/14	23% success
Companies/organisations participating:	170	
Companies/organisations new to EU projects:	69	41%
SME/midcap partners:	136	80%
Manufacturing companies:	59	35%
Technology companies:	82	48%
Countries participating:	28	
Hungarian partners applying/successful:	12/4	33% success

Experience with Hungarian participation

 First Open Call: 5 Hungarian partners in various applications – none of these were successful

Reasons:

- Good ideas but less well-written applications
- Do not address assessment criteria properly
- Does not concentrate on key aspects
- Second Open Call: 7 Hungarian partners 4 successful (in 2 proposals)

Reasons:

- Detailed feedback from first call
- Working closer with DIH (Innomine)
- Working closer with technical support team from project (Westminster)

How to write a good proposal

- Take time to read documentation
- Follow instructions/guiding notes thoroughly
 - Highlight how you addressed key points in guidance, e.g. sections, headings, bold fonts etc.
 - Consider and address evaluation criteria thoroughly
- Keep rules (e.g. page limits)
- Concentrate on what the project/evaluators want to see
- Ask questions, attend webinars, talk to the project
- Write clearly check language
 - The evaluators will only assess what they read, you cannot assume that the have further information
- Budget should be realistic

Thank you

Any questions?

UNIVERSITY OF
LEADING
THE WAY
WESTMINSTER#

Prof. Tamas Kiss Director of Research Centre for Parallel Computing University of Westminster

115 New Cavendish Street London, W1W 6UW United Kingdom

Email: t.kiss@westminster.ac.uk